

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

This thesis was performed at the MOVES Institute
Approved for public release; distribution is unlimited

PERFORMANCE ASSESSMENT OF NETWORK
INTRUSION-ALERT PREDICTION

by

Farn Wei Jason Khong

September 2012

 Thesis Advisor: Christian J. Darken
 Thesis Co-Advisor: Neil C. Rowe
 Second Reader: Terence Tan

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Performance Assessment of Network Intrusion-
Alert Prediction

5. FUNDING NUMBERS

6. AUTHOR(S) Farn Wei Jason Khong

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ___N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
In the current global cyber warfare landscape, cyber attacks on infrastructure are a serious threat. Although
network administrators use intrusion detection systems (IDSs) to detect threats and anomalies, they
usually only offer post-attacks alerts. If we could predict malicious activities, we could allow network
administrators or security enhancing software to take appropriate actions in advance of damage occurring.
Incoming intrusion detection alerts can be considered as a sequence. We used Pytbull to simulate cyber
attacks within a testbed network environment and collected Snort generated intrusion detection alerts. We
tested four sets of alert-prediction programs with this data: Single-Scope Blending algorithm, a Simple
Bayesian Mixture algorithm, a Multiple Simple Bayesian algorithm and a Variable Markov Model algorithm.
The harmonic mean of the precision and recall (F-score) measured prediction accuracy. The Single-Scope
Blending algorithm performed the best in these tests, especially in a multiple attacker environment.

14. SUBJECT TERMS Artificial Intelligence, Agent-Based Modeling/Simulation, Network
Security, Intrusion Detection System, Alert Prediction

15. NUMBER OF
PAGES

59
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

PERFORMANCE ASSESSMENT OF NETWORK INTRUSION-ALERT
PREDICTION

Farn Wei Jason Khong
Civilian, Defence Science and Technology Agency, Singapore

B.Eng., (Hons), Nanyang Technological University, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL

September 2012

Author: Farn Wei Jason Khong

Approved by: Christian J. Darken

Thesis Advisor

Neil C. Rowe
Thesis Co-Advisor

Kian-Moh Terence Tan
Second Reader

Christian J. Darken
Chair, MOVES Academic Committee

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In the current global cyber warfare landscape, cyber attacks on infrastructure are

a serious threat. Although network administrators use intrusion detection systems

(IDSs) to detect threats and anomalies, they usually only offer post-attacks alerts.

If we could predict malicious activities, we could allow network administrators or

security enhancing software to take appropriate actions in advance of damage

occurring. Incoming intrusion detection alerts can be considered as a sequence.

We used Pytbull to simulate cyber attacks within a testbed network environment

and collected Snort generated intrusion detection alerts. We tested four sets of

alert-prediction programs with this data: Single-Scope Blending algorithm, a

Simple Bayesian Mixture algorithm, a Multiple Simple Bayesian algorithm and a

Variable Markov Model algorithm. The harmonic mean of the precision and recall

(F-score) measured prediction accuracy. The Single-Scope Blending algorithm

performed the best in these tests, especially in a multiple attacker environment.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. BACKGROUND ON ALERT PREDICTION .. 3

III. METHODOLOGY .. 9
A. HONEYPOTS ... 9
B. INTRUSION DETECTION SYSTEM .. 10

1. Intrusion-Detection Techniques ... 10
2. SNORT .. 10

C. PYTBULL ... 12
D. BACKTRACK LINUX ... 13
E. VIRTUALIZATION TECHNOLOGY ... 14
F. EVALUATION CRITERIA .. 15

IV. EXPERIMENTAL SETUP ... 17
A. EXPERIMENT SPECIFICATION.. 17

1. Hardware Specifications ... 17
2. Software Specifications .. 18
3. Network configuration ... 21
4. Problems Encountered ... 22

B. EXPERIMENT SETUP ... 24
1. Experiment One ... 24
2. Experiment Two ... 24
3. Experiment Three .. 24
4. Experiment Four .. 25
5. Problems Encountered ... 25

V. RESULTS AND DISCUSSION ... 27
A. ONE ATTACKER VERSUS ONE VICTIM ... 27
B. THREE ATTACKERS VERSUS THREE VICTIMS 29

VI. CONCLUSION AND FUTURE WORK.. 37

LIST OF REFERENCES .. 39

INITIAL DISTRIBUTION LIST ... 41

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Single-Scope Blending Network (From Tan & Darken, 2012b) 6
Figure 2. Snort Architecture (From Olney, 2008) ... 11
Figure 3. Network Connection Diagram ... 22
Figure 4. F-score Comparison: One Attacker versus One Victim with

Random Period of up to 180 Seconds between Attacks 28
Figure 5. F-score Comparison: Three Attackers versus Three Victims with

Random Period of up to 180 Seconds between Attacks (No
Overlapping Attacks) .. 29

Figure 6. F-score Comparison: Three Attackers versus Three Victims with
Random Period of up to 180 Seconds between Attacks
(Simultaneous attacks) ... 30

Figure 7. F-score Comparison: Three Attackers versus Three Victims with
Random Period of about 10 Seconds between Attacks.
(Simultaneous Attacks) ... 33

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Example of Network Security Alerts in Relational Time Series 5
Table 2. Pytbull Test Modules (From Damaye, 2012) 12
Table 3. BackTrack Intrusion-detection System/Intrusion-prevention System

Penetration Testing Modules .. 14
Table 4. Hardware Specifications ... 18
Table 5. Software Components on Experiment Machines 21
Table 6. Reset Outside Window Alerts ... 25
Table 7. Breakdown of Percept Batches: One Attacker versus One Victim

with Random Period of up to 180 Seconds between Attacks 28
Table 8. Distribution of Percept Batches for Experiment 2,3 and 4 31
Table 9. Extract of Alerts from Multiple Attackers ... 32
Table 10. Computation Time: Three Attackers versus Three Victims with

Random Period of about 10 Seconds between Attacks.
(Simultaneous Attacks) ... 33

Table 11. T-test Probabilities that the Algorithm’s Performance is similar to
that of SSB’s (Experiment 2) .. 34

Table 12. T-test Probabilities that the Algorithm’s Performance is similar to
that of SSB’s (Experiment 3) .. 34

Table 13. T-test Probabilities that the Algorithm’s Performance is similar to
that of SSB’s (Experiment 4) .. 35

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

Acronym Definition

CSV Comma-separated Values

IP Internet Protocol

MSB Multiple Simple Bayesian

RTS Relational Time Series

SBM Simple Bayesian Mixture

SQL Structured Query Language

SSB Single-Scope Blending

VOMM Variable Order Markov Models

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

This master’s thesis would not have been possible without the help and

support of the people of numerous people. I would like to express my gratitude to

my thesis advisor, Dr. Christian Darken, for his guidance and encouragement.

His lectures and work on Artificial Intelligence spurred me to work on this thesis. I

would also like to thank my thesis co-advisor, Professor Neil Rowe, especially for

sharing his technical expertise and guidance on cyber security and intrusion-

detection systems. Many thanks to my second reader, Mr Terence Tan, for

providing his prediction algorithm codes to make the evaluation possible and also

in his relentless help in explaining hours the theories.

I would also like to thank my sponsor, the Defence Science and

Technology Agency (DSTA) for making my studies at the Naval Postgraduate

School possible.

I wish to thank my friends and colleagues for their encouragements and

well-wishes.

Finally, I would like to thank my family and my wife, who are in Singapore,

for their love, patience and being understanding during my stint in Naval

Postgraduate School.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In his statement that “cyber threat is one of the most serious economic

and national security challenges we face as a nation,” President Obama stressed

the importance of securing networks against cyber attacks (Council, n.d.).

Network administrators employ intrusion-detection systems (IDSs) to detect

malicious threats on their computer networks. The intrusion-detection system

monitors and generates alerts for network traffic that are malicious or suspicious

(Albin, 2011). However, if an attack is genuine, the system usually reports the

attack only after it has happened since most attacks happen in seconds and

most intrusion-detection systems are not linked to an intrusion prevention system

that takes immediate action. Network administrators will then take steps to rectify

any system malfunction caused by the event by inspecting the alerts later. It

would reduce or even prevent damages if one could predict the attack and

perform pre-emptive actions.

The goal of the thesis was to provide data to compare the performance of

several prediction algorithms that could infer alerts earlier. These algorithms

have various degrees of success in predicting states, events and actions on an

agent-based simulation system (Tan & Darken, 2012a, 2012b). Tan adapted the

programs used in Tan and Darken (2012a, 2012b) to predict Snort alerts. We

evaluate the prediction algorithms by running the programs provided by Tan to

compare their prediction accuracy on the effects of different attack

configurations. The research required a collection a representative set of

intrusion-detection system alert logs as the dataset for processing by the

prediction algorithms. Computer networks are constantly exposed to cyber

attacks. This threat has been growing over the years in terms of attack frequency

and damage level. According to Symantec (2011), there are more than

286 million new threats in 2010. The U.S. Computer Emergency Readiness

Team (US-CERT) reported a 40 percent increase in cyber attacks in 2010 on

federal agencies, from 30,000 the previous year to 41,766 (Johnson, 2011).

 2

Traditionally, damages arising from cyber attacks range from taking Internet

services offline to classified company information leaks, loss of personnel

information, credit card information theft, etc. The focus has shifted to attacks

that can cause significant damage.

Intrusion detection alerts can be expressed as a Relational Time Series

(RTS). The intrusion-detection system generates alerts as malicious activities

arrive in time sequence. According to Tan and Darken (2012a, 2012b), a RTS is

a “sequence of relational percepts.” (Tan & Darken, 2012b). The intrusion

detection alerts RTS is inherently unknown, noisy and constantly evolving. Hence

an alerts RTS provides a good domain for evaluating the effectiveness of new

prediction algorithms.

Chapter II describes the background of prediction algorithms. We will

discuss the background of the key components used for the thesis in Chapter III.

Chapter IV presents the steps involved in the setup of the experiment, details of

the software, hardware and individual component configurations. Chapter V

provides the evaluation of the results and Chapter VI provides the conclusion and

suggestions for future work.

 3

II. BACKGROUND ON ALERT PREDICTION

Intrusion-detection systems generate alerts when attack activities have

taken place. They allow network administrators to conduct remedial actions.

However, intrusion-detection systems cannot predict attack activities. A proactive

approach is to anticipate and conduct possible attacks to prevent damage. This

chapter describes the current approaches to prediction algorithm that may be

applicable to predicting intrusion detection alerts.

One approach to predicting an attacker’s behavior is plan recognition.

Geib and Goldman (2001) defined a plan library of specific attacks to predict an

attack plan. Plan recognition entails having a security professional to compile the

plan library manually. It is time consuming and not always able to respond to new

attack variants. To account for variation in order or missing actions in an attack

sequence, will increase the complexity of the plan matching. Also, the plan library

must be updated frequently to meet new attack sequence.

Other methods do data mining to predict the occurrence likelihood of the

next alert. Cipriano, Zand, Houmansadr, Kruegel, and Vigna (2011) introduced

such a prediction algorithm, Nexat, that automates machine learning process.

During data mining, it uses historical data to learn the co-occurrence of the alerts.

At run time, it uses the trained database and weighted probability to predict the

next alert. A large database of historical data is required. Nexat finds a fit to the

historical data and so cannot predict new attacks.

Other work proposed proposed the use of “network attack graph” to

analyze the security vulnerabilities and find all possible attack sequences (Lei &

Li, 2007). A network attack graph is generated by correlating alerts according to

source and destination Internet Protocol (IP) addresses. The predicted next alert

is determined through predictability scores derived from the attack graph. It

provides graphical flow of the attack sequence to the network administrator.

However, the graph generation process includes low probable alerts into the

 4

attack sequence, which must then be removed manually to improve the

prediction. This method also cannot detect out of sequence attacks.

Another technique called “sequence pattern mining” reduces the effort to

construct pattern rules. Using the database derived from a historical attack

sequence is vulnerable to new attack strategies. Li, Zhang, Li, and Wang (2007)

observe that most attacks are completed within a certain time span. They

proposed an incremental mining algorithm to identify sequential attack patterns

over divided time window. The database is updated within a shorter period after

the new attack strategy appears. After the initial rule generation, the performance

of subsequent updates would be faster as the number of new alert sequence

received reduces.

Another way of processing security alerts is by organizing them into

relational time series (RTS). The intrusion-detection system generates security

alerts in a sequential order by time of arrival. These alerts form a sequence of

relational percepts. “Each percept is a ground atom defined as pi = r(c1, c2, …,

cm), where r is the predicate and cj(1..m) are constants that represent objects”

(Tan & Darken, 2012b). For security alerts, r is the alert type/identity and cj(1..m)

refers to an entity such as source or destination IP. We give an example of this

representation for a stream of alerts in Table 1.

 5

Time Incoming Security Alerts Relational Time Series
0 Alert message: (spp_frag3)

Short fragment, possible DoS
attempt
Source: 192.168.1.2
Destination: 192.168.1.3

ShortFragDOS(192.168.1.2,
192.168.1.3, UDP)

21 Alert message: Reset outside
window
Source: 192.168.1.2
Destination: 192.168.1.3

ResetWindow(192.168.1.2,
192.168.1.3, TCP)

30 Alert message: ICMP-INFO
Fragment Reassembly Time
Exceeded
Source: 192.168.1.3
Destination: 192.168.1.2

FragReassemblyExceed(192.168.1.3,
192.168.1.2, ICMP)

38 Alert message: Reset outside
window
Source: 192.168.1.2
Destination: 192.168.1.3

ResetWindow(192.168.1.2,
192.168.1.3, TCP)

38.5 Alert message: (spp_frag3)
Fragmentation overlap
Source: 192.168.1.2
Destination: 192.168.1.3

FragOverlap(192.168.1.2,
192.168.1.3, UDP)

Table 1. Example of Network Security Alerts in Relational Time Series

A software agent can learn percepts based on the situation (situation

learning) and can predict future events in a RTS (Darken, 2005). When predicting

the next percept, we can take into account all previous percept sequences to

derive a probability distribution for a prediction. A simplifying assumption is that

recent percepts are more useful than all the percepts. This is relevant to cyber-

attack activities where related attack events generally arrive within a short time

span (“situation-based learning”). This also helps with noisy network traffic by

reducing stray alerts from the predictor function. The situation learning approach

organizes the RTS into smaller grouped situations. In addition to increased

predictor relevancy (in terms of recent percepts), situation learning reduces the

prediction complexity. Situation learning can be accomplished by a variety of

 6

inferencing methods such as Variable Order Markov Models (VOMM), Multiple

Simple Bayesian (MSB), Simple Bayesian Mixture (SBM) and Single-Scope

Blending (SSB).

Tan and Darken (2012a) compared the prediction performance of these

methods in a role-playing game environment, where an agent moves and

perform actions randomly together with other agents. In Multiple Siple Bayesian

inference, there is a naïve Bayesian network for each predictive percept and

situation pair. During each prediction event, the Bayesian network forms a

probability distribution for all previously seen alerts by computing P(Ai|C), where

P is the conditional probability, Ai refers to each alerts observed, C is the current

situation. Simple Bayesian Mixture inference is implemented by normalizing a

linear combination of multiple probability densities. Variable Order Markov

Models use a variable order Markov chain instead of a fixed order.

Single-Scope Blending inference is shown in Figure 1. A “generic space”

contains the common atoms in both concept 1 and concept 2. Concept 2 is the

current situation, and concept 1 is a previous situation that is selected to

maximize the generic space. That is, concept 1 is the most similar situation.

Blend B is the predicted situation which is generated by using the frame from

concept 1 and constant mapping from concept 2. This is a form of inference by

analogy.

Figure 1. Single-Scope Blending Network (From Tan & Darken, 2012b)

 7

Single-Scope Blending could achieve better prediction performance than

the other inference methods because it makes use of similarities for prediction

instead of exact matching (Tan & Darken, 2012b). Since intrusion detection alerts

form a RTS sequence, Single-Scope Blending would seem promising. Thus Tan

adapted the programs used in Tan and Darken (2012a, 2012b) to predict Snort

alerts. We tested these programs to evaluate their performance. A collection of

intrusion-detection datasets was required. We generated these alerts within a

controlled environment using the tools described in Chapter III.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

III. METHODOLOGY

A. HONEYPOTS

A collection of datasets (intrusion detection alerts) is required for the

prediction-algorithms analysis. One way to gather the dataset is through

honeypots, machines explicitly designated solely to learn the methods used by

black-hats to probe and hack a system so that a network administrator can

improve the security policies (Spitzner, 1999). Monitoring tools, such as an

intrusion-detection system, are installed on the honeypot. If placed within the

network, honeypots are used to monitor abnormal activities such as

compromised systems within the organization. Our first experiments used such

data.

However, with honeypots we cannot control important factors that may

affect prediction performance, such as frequency of attacks, number of attackers

and number of targets. There is also noise traffic in honeypot data which makes

analysis difficult. Collection of data sufficient for analysis through deployment of

honeypots can be time consuming. Also, as vulnerabilities of the honeypot are

learned, hackers may give up and go after easier targets, which decreases the

alerts logged (Rowe, Custy, & Duong, 2007).

Therefore, the thesis explored an alternative of simulating honeypot data.

We controlled the environment to provide data on only specific types of attacks.

This minimized “noise traffic” as the intrusion-detection system was not directly

exposed to the Internet. The testbed environment consisted of a local-area

network, the intrusion-detection system and the attackers on other machine. The

attacks were carried out in various configurations and we kept a log file of the

alerts produced. These log files are used as the dataset for the prediction

algorithms.

 10

B. INTRUSION DETECTION SYSTEM

1. Intrusion-Detection Techniques

Intrusion-detection techniques are anomaly-based and/or signature-

based. Anomaly-based detection examines the operation profile of the network

and determines what considers the normal activities. A deviation from the

operation profile causes the intrusion-detection system to send an alarm for

anomaly activities. Signature-based detection, also known as rule-based

detection, uses information of historical malicious activities as signatures to

determine the threats. In this thesis, we use Snort to generate the intrusion

detection alerts.

2. SNORT

Snort is an open source network intrusion prevention and detection
system (IDS/IPS) developed by Sourcefire. Combining the benefits
of signature, protocol, and anomaly-based inspection, Snort is the
most widely deployed IDS/IPS technology worldwide. With millions
of downloads and nearly 400,000 registered users, Snort has
become the de facto standard for IPS. (Snort, 2012)

We choose Snort because it is an open source product that is free to

download and can be deployed cross-platform (Windows and Linux). It can be

installed and run from a personal computer. The Sourcefire Vulnerability

Research Team provides tested and certified rules free for registered users. The

rules are updated regularly. A subscription is required for latest initial release.

The rules are available to registered users after 30 days of initial release. Snort

monitors the network and detects known threats using signatures and threat

patterns.

We briefly describe the Snort architecture (Figure 2) Snort consists of four

main components (Olney, 2008):

 Packet decoder. The key requirement of Snort is to capture network
packets. Libpcap (for Linux) or Winpcap (for Windows) must be
installed for packet capturing. The packet decoder translates it into
packet-header information and payload.

 11

 Preprocessors. The preprocessors rearrange or reassemble
packets before the detection engine analyzes them. Incoming
packets may be fragmented to avoid detection by the standard
Snort rules, so preprocessors reassemble fragmented packets and
generate pseudo packets to be fed back to the packet decoder.

 Detection engine. The detection engine analyzes all packets with
pre-defined rules. If a match is found, the packet is sent to the
output module. The rule syntax can include various elements in a
data packet such as protocol type, port number, packet length,
packet header and packet content.

 Outputs. After a threat is detected, the information is passed to the
output module for presentation. An alert can be sent to the
administrators by pop-up messages or email alerts. The alerts can
be stored on a text file, csv (comma-separated values) file or on a
Structured Query Language (SQL) database. Our research stored
the generated alerts into csv files.

Figure 2. Snort Architecture (From Olney, 2008)

We deployed Snort by connecting it to a port-mirroring switch. We

configured the switch to send a copy of every network packet of other ports to the

mirrored port. The test environment entails both attacker and target machines

within the local-area network.

 12

C. PYTBULL

To create various attack configurations for prediction performance

analysis, we use tools to simulate malicious traffic in an experimental network. A

intrusion-prevention system penetration tester can do this. It injects malicious

packets into the network either by means of custom packets with attack

signatures or simulating attack patterns. We used Pytbull to do this and yield an

alert file (Damaye, 2012).

Pytbull can automatically conduct simulated attacks on a target. A Pytbull

application consists of an attacker machine and a server. The prerequisite

services running on the server are FTP, HTTP, SSH and the Pytbull server itself

(running a reverse shell). These services allow Pytbull, executing from the

attacker machine, to conduct tests related to these services. Pytbull provides

about 300 tests in 11 testing modules, listed in Table 2. These modules are

reconfigurable, which allow us to customize the attack patterns.

No. Test Module Description
1 badTraffic Non-RFC-compliant packets are sent to the server.
2 bruteForce Tests the ability of the server to track brute force

attacks (as on FTP).
3 clientSideAttacks Uses a reverse shell to provide the server with

instructions to download remote malicious files.
4 denialOfservice Tests the ability of the intrusion-detection system to

protect against denial-of-service attempts.
5 evasionTechniques Check if the intrusion-detection system can detect

various evasion methods.
6 fragmentedPackets Sends various fragmented payloads to the server to

test its ability to recompose them and detect attacks.
7 ipReputation Tests the ability of the server to detect traffic from/to

low reputation servers.
8 normalUsage Sends payloads that correspond to normal usage.
9 pcapReplay Repalys pcap files (packet sequences)
10 shellCodes Sends various shellcodes to the server on port 21/tcp

to test its ability to reject them.
11 testRules Testing of basic rules. of the intrusion-detection

system/intrusion prevention system.

Table 2. Pytbull Test Modules (From Damaye, 2012)

 13

Each testing module allows tests that to be enabled or disabled via

configuration files. Pytbull conducts these tests in sequence. At the end of each

run, we extracted the alert log file to determine whether the tests are detected.

Similar experiments were conducted in (Albin, 2011), which identified tests

such as client-side attacks and pcap replay (pcap of the Slammer worm) that

were not detected by Snort, although a large number of repetitive and not

meaningful “reset outside window” alerts were found in our experiment. We

excluded these tests from our random attacks run to reduce the number of “reset

outside window” alerts. We broke down the individual attacks into separate

configuration files so that we could select or randomly launch individual attacks.

D. BACKTRACK LINUX

We needed an operating system for both Snort and Pytbull. Snort can

operate on either the Windows or Linux platform while Pytbull only operates on

the Linux platform. We choose Linux as our operating system to simplify the

software configuration so that we could install both applications on a single

platform. We replicated the operating system and software configuration for

multiple machines by using virtual machines.

BackTrack is a Linux-based intrusion-detection system/intrusion-

prevention system penetration testing distribution that is free (BackTrack, n.d.). It

provides security professionals with a large database of security tools packaged

in the Linux operating system. We use BackTrack release 2 with KDE desktop

environment. BackTrack can be installed and boot from a thumbdrive, harddrive,

or directly from a Live DVD. A Live DVD refers to the ability to boot the entire

operating system and run applications directly from a DVD.

BackTrack is pre-installed with 12 categories of security tools as shown in

Table 3:

 14

BackTrack intrusion-detection system/intrusion-prevention
system penetration testing modules

Information gathering Stress testing
Vulnerability assessment Forensics

Exploitation tools Reporting tools
Privilege escalation Services
Maintaining access Miscellanous

Reverse engineering
RFID tools

Table 3. BackTrack Intrusion-detection System/Intrusion-prevention
System Penetration Testing Modules

Both Snort and Pytbull, and their prerequisite tools (such as Tcpdump and

Libpcap) are pre-installed in BackTrack. Therefore, we do not have to go through

an entire package installation process. Software updating and rules updating (for

Snort) is advised to ensure the latest package release is installed.

E. VIRTUALIZATION TECHNOLOGY

Virtualization software, such as the VMware, seeks to improve machine

versatility by allowing a single machine to run multiple operating systems at the

same time (VMware, 2012). A virtualization application runs on the main

operating system, sharing the system resources with other applications. Multiple

operating systems then run on the virtualization application. The resources

allocated to the virtualization application are shared among these virtual

machines. For example, the main operating system can be a running Microsoft

Windows 7 operating system, while the virtual machines are running Linux

operating systems. Virtual machines are installed on “virtual disk” residing on a

separate file container on either the main machine or separate storage system.

This separation ensures the files belonging to different virtual machines and main

machine do not corrupt.

 15

In our experiments, we used the VMware player version 5 as the

virtualization software. This enabled us to use two physical machines to run six

virtual machines at the same time. Snort and Pytbull were configured on these

virtual machines.

F. EVALUATION CRITERIA

This section describes the metrics used to evaluate the prediction

algorithms.

A true positive refers to making a correct positive prediction (the predicted

event occurred) whereas a false positive refers to making a wrong positive

prediction (the predicted event did not occur). A false negative refers to making a

wrong negative prediction (the actual event coincides to the event that is

predicted as not occurring). An intrusion detection alert prediction predicts the

attacker IP address, the target IP address, the alert identification and the protocol

type. These fields must match the real fields for the prediction to be considered a

true positive prediction.

The precision measures the number of true positives in relation to the total

number of positive predictions (sum of true positives and false positives) made

(Rijsbergen, 1979). In cyber security, a high precision level is equivalent to

predicting existence of real threats correctly with low levels of false alarms.

The recall measures the total number of true positive predictions in

relation to the total number of actual positives (sum of true positives and false

negatives). If the prediction in cyber security has a high recall value, we can say

that the system focuses on security. That is to raise an alert for a possible threat

than to miss a real threat.

The F-score is the harmonic mean of precision and recall. It rewards

increases in both precision and recall. We use this metric for our prediction

algorithm evaluation as it balances between precision and recall instead of

sacrificing one metric for the other.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

IV. EXPERIMENTAL SETUP

In our alert dataset generation, we identified three key agents - the

attacker, the victim, and the intrusion-detection system. The attacker uses Pytbull

to launch various penetration tests on the victim, whereas the intrusion-detection

system listens to the traffic and generates alerts in a log file. This chapter

describes the hardware and software configuration used in our experiment.

A. EXPERIMENT SPECIFICATION

1. Hardware Specifications

The specifications of each hardware component in our experiments are

listed in Table 4.

We deployed two physical machines in our networked environment. They

were connected to the network switch via Ethernet cables. We use virtual

machines on these computers to simulate multiple hosts on the network. The

machine running the intrusion-detection system was connected to the mirrored

port of the switch to listen to network traffic.

A broadband router acts as a gateway to the Internet. Its main function is

to lease IP addresses to the virtual machines by acting as a Dynamic Host

Configuration Protocol Server and to direct incoming and outgoing traffic through

Network Address Translation.

Although our broadband router sufficiently connects the computers to form

an internal network, it did not have a port mirroring feature to allow an intrusion-

detection system to listen. So we deployed a mirroring capable Ethernet switch.

The machine running intrusion-detection system was connected to port 1, and

the other machine was connected to port 2. We configured all traffic from port 2

to be mirrored to port 1.

 18

Machine 1
(Lenovo T500)

Processor Intel Core2 Duo P8600 2.4 GHz
Storage 240 GB
Memory 2 GB
Network Interface Intel 82567LF Gigabit Network Connection
Operating System Microsoft Windows XP Professional Service

Pack 3
Machine 2

(Dell Latitude E6500)
Processor Intel Core2 Duo P8600 2.4 GHz
Storage 150 GB
Memory 4 GB
Network Interface Intel 8256LM Gigabit Network Connection
Operating System Microsoft Windows 7 Service Pack 1

Broadband Router
(Cisco Linksys E4200)

Standards 802.11a, 802.11b, 802.11n, 802.11g, 802.3,
802.3u, 802.3ab

Wireless Frequency
Band

2.4 GHz, 5 Ghz

Network Ports LAN: 4 x 10/100/1000 Mbps Ethernet
Hi-Speed USB: 1 x 4 pin USB Type A
WAN: 1 x 10/100/1000 Mbps Ethernet

Number of Antennas 6 antennas. 3 each per 2.4GHz and 5GHz
radio band.

Ethernet Switch
(Netgear ProSafe Plus 8-port Ethernet Switch GS108E)

Standards 802.3i, 802.3u, 802.3z
Network Ports LAN: 8 x 10/100/1000 Mbps Ethernet
Features Network monitoring

Table 4. Hardware Specifications

2. Software Specifications

Initially, we configured Snort to run on the physical machine. However, we

could not enable promiscuous mode for the network interface in Windows

environment. Normally, a network interface only receives network packets

designated to it; in promiscuous mode, the network interface accepts all network

packets on the network. Thus, we ran Snort from within a Linux virtual machine,

 19

which set the network interface in promiscuous mode during packet sniffing. We

verified by checking that the Snort generated alert for attacks conducted on other

virtual machines.

We installed VMware player 4.0.4 on both computers. We created three

different types of virtual machines. Each virtual machine used 512 MB of memory

and 14 GB of hard disk space. The virtual-network adapter was bridged to the

physical network adapter. We then installed the same software for these virtual

machines. We created multiple virtual machines by replicating the physical folder

of the initial installation in other folders. A total of six virtual machines were

deployed in our experiment.

The Linux-based penetration testing distribution, BackTrack 5 release 2,

was installed as the operating system. The distribution uses KDE as the desktop

environment and runs on a 32-bit CPU architecture. We opted for 32-bit instead

of 64-bit because the physical machine used a 32-bit operating system. This also

ensures portability across machines (or additional machines). To launch the

desktop environment, we enter “startx” after the initial boot up sequence.

BackTrack was pre-installed with Snort and Pytbull. We updated Snort to

version 2.9.2.3 and its prerequisite package Libpcap to version 1.0.0-6. There

was a need to update Libpcap so that it is compatible to Snort. We also obtained

the updated Snort ruleset release 2.9.2.3 from the Sourcefire Vulnerability

Research Team. We enabled the ruleset in the Snort configuration file. We did

not need to configure a SQL database for the Snort alert as we are using the

default csv file logging.

We updated Pytbull to version 2.0. Prior to executing Pytbull or the Pytbull

server, we must ensure Apache2, SSH and FTP services are already running as

some of the attacks were conducted on these services. For both FTP tests and

alert file retrieval, Pytbull requires the server to setup an FTP account and a user

home directory. We also specify the paths of the supporting tools (nikto, hping3,

ping, tcpreplay, ncrack, ab), which are necessary for Pytbull in the configuration

 20

file. Pytbull launches specific tests according to the configuration file. The test

configurations for each type of test were stored in module configuration file.

Thus, we broke it down into individual tests by creating different module

configuration files and Pytbull configuration files.

The test selection is achieved by executing the associated module

configuration file and Pytbull configuration file. A script was created to select the

desired test (or choose one at random) and to create continuous test runs. At the

end of each Pytbull execution, it retrieved the Snort alert file via FTP and hosted

a webpage to produce a summary of the intrusion-detection system/intrusion-

prevention system penetration test. Since this feature was not required in our

experiment, and to prevent the webpage hosting from halting our continuous test

runs (running one test after another), we modified Pytbull codes to skip this

feature.

Table 5 shows the three key members of our experiment (the attacker, the

victim and the intrusion-detection system) and the software components they are

using. They were virtual machines running within VMware Player 4.0.4.

 21

Intrusion Detection System (+ Victim)

Primary role Sniff packets and generate alert log. Solicit
attacks.

Software
components

Snort 2.9.2.3 – intrusion-detection system
Apache – web server
SSH – secure shell server
Vsftpd – ftp server
Pytbull server – server to allow pytbull to
conduct reverse shell commands

Victim

Primary role Solicit attacks.
Software
components

Apache – web server
SSH – secure shell server
Vsftpd – ftp server
Pytbull server – server to allow pytbull to
conduct reverse shell commands

Attacker

Primary role Launch attacks to trigger intrusion-detection
system alerts.

Software
components

Pytbull – launch penetration test on victim
machines

Table 5. Software Components on Experiment Machines

3. Network configuration

We deployed the network participants as virtual machines in our

networked environment. A total of three attacker and three victim virtual

machines were deployed, where one of the victims also had the intrusion-

detection system running. We divided the virtual machines between the two

physical machines to balance the load. Machine 1 hosted the intrusion-detection

system, Victim 1 and Victim 2. Machine 2 hosted Attacker 1, Attacker 2 and

Attacker 3. We determined that the intrusion-detection system required higher

processing power as it processes all packets sniffed across the network. We

allocated it to the victim virtual machines in one physical machine as victim

machines are the receiving ends of the attacksand this did not require high

processing power.

 22

Machine 1’s network interface card connected to the mirroring port on the

first port of the Ethernet switch. Machine 2’s network interface card connected to

the second port. We connected the broadband router to port eight. All the virtual

network interfaces (within the virtual machines) were bridged to the physical

machine to simulate physical connections to the switch. We configured the switch

to mirror all network packets from all other ports to port one. Figure 3 shows the

network connections.

Figure 3. Network Connection Diagram

4. Problems Encountered

 We initially deployed Snort in a Windows environment. The

straightforward configuration is to put the Snort configuration directly on the

physical machine. However, we realized that we need to determine whether it

was working only after running the intrusion-detection system/intrusion-

prevention system penetration testing tool.

 23

Intrusion-detection system/intrusion-prevention system testing could be

conducted by manually launching attacks. However, that is time-consuming and

requires specific individual configuration such as port scanning followed by

sending a payload. Pytbull presents itself as an automatic tester packaged with

different types of test modules. Manual updating and configuration for Pytbull are

required although it was preinstalled in the BackTrack distribution. For instance,

we created a relevant user account on the operating system for the FTP service.

The configuration file was also updated to reflect the folder path of the

prerequisite tools Pytbull depends on. Pytbull launched tests in a fixed order.

However, we wanted it randomized. We discovered that the tests are based on

the module configuration file. We segregated these attacks into individual

configuration files. At each Pytbull execution, we selected the configuration file to

use by random.

After Pytbull was configured, we conduct some pilot runs. We discovered

that Snort only detects network broadcast messages. Network traffic that was not

directed to the Snort machine was not detected by Snort. Due to the limited

resources, the participants were networked to the broadband router, which had a

built-in switch. Online discussion sites revealed the possible reasons were either

a lack of port mirroring switch, or the network interface’s inability to operate in

promiscuous mode. The following steps were taken to tackle the problem:

 Configured Linux-based Snort: We suspected that the physical
machine’s network interface could not operate in promiscuous
mode in Windows environment. Since Snort is pre-installed in
BackTrack, we reconfigured Snort to run from Linux environment.

 Snort Machine as victim: We conducted tests on the Snort machine
to verify the configuration. We were unable to perform these tests
on Windows-based Snort as the victim has to be running the Pytbull
server in a Linux operating system.

 Connect the machines to a port-mirroring switch: We procured a
port-mirroring-capable switch and configured mirroring in place of
the broadband router’s built-in switch.

 24

 Tested Snort detection on victim: We started another virtual
machine to test if Snort could detect Pytbull tests on other machine.
We verified that this network configuration was working by checking
the alerts for detected attacks on victim 1.

B. EXPERIMENT SETUP

In this section, we describe the different configurations we use to generate

alert datasets.

1. Experiment One

We set up a scenario where there is one attacker targeting one victim.

Between each attack execution, the attacker waits for a random period of up to

180 seconds. This is to randomize the frequency of attacks.

2. Experiment Two

We simulated a scenario where there are multiple attackers in the

network. We increased the number of attackers to three and number of victims to

three. The attackers launched their entire series of attacks one after another. But

at any one time, there is only one attacker launching the attacks. Between each

attack, the attacker waits for a random period of up to 180 seconds. Attackers

randomly select the victims to attack. Because of this random selection, the

number of attacker-to-victim pairs increases to nine pairs as compared to one

pair in experiment one.

3. Experiment Three

In our third experiment, we evaluated the performance on the algorithm’s

prediction ability if the intrusion-detection system detects multiple attackers in

randomized sequence. Three attackers were configured to launch attacks

simultaneously. The wait period is a random period of up to 180 seconds.

 25

4. Experiment Four

The last experiment evaluated whether the algorithm could perform

prediction in situations where the attacks from different attackers overlap. Three

attackers launch their attacks simultaneously with a wait period of about ten

seconds.

5. Problems Encountered

We notice numerous “reset outside window” alerts were generated from

Snort during our initial data collection. These alerts are repetitive and not

meaningful. We are unable to explain the phenomenon other than by associating

these alerts to the attacks that Snort is not able to detect and report. Snort is not

able to detect client-side attacks and pcap replay (Albin, 2011). To reduce the

number of “reset outside window” alerts, we disabled these Pytbull modules from

launching during our experiment. Table 6 shows an example of a stream of “reset

outside window” alerts Snort generats during client-side attacks.

Timestamp Sig. ID Rev. Message Protocol Source IP Destination
IP

06/19/12-
21:02:55.614512

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.614516

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.614547

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.614551

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.615070

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.615078

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.620332

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.620821

129 15 1 Reset outside
window

TCP 192.168.1.137 192.168.1.101

Table 6. Reset Outside Window Alerts

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

V. RESULTS AND DISCUSSION

In this chapter, we present our results from running Tan’s prediction

algorithm programs, adapted from Tan and Darken (2012a, 2012b), on our

generated dataset. We compared the prediction algorithms at different entropy

levels.

Finally, we conducted significance testing to determine if the prediction

accuracies of other algorithms were similar to that of the Single-Scope Blending

algorithm.

A. ONE ATTACKER VERSUS ONE VICTIM

Figure 4 shows the accuracy of the prediction algorithm for one attacker

and one victim. The dataset was divided into 126 batches of 100 percepts each.

The F-score was used to evaluate the accuracy of the prediction algorithms. We

post-processed and classified the prediction result of each batch based on

different entropy levels. Entropy is a measure of uncertainty of random variables

defined in Shannon (1984). In our context, the random variable is the occurrence

of alerts. It is computed as

2() (())
n

i i
i

E p x log p x ,

where ()ip x is the probability of ix . Entropy in each batch of percepts was used

to represent the number of unique alerts (consisting of the attacker IP address,

the target IP address, the alert identification and the protocol type). It describes

the variability of that batch with regards to the proportion of each unique alert.

The entropy increases with the number of unique alerts. Entropy is an

appropriate measure because when entropy is low (highly repetitive and low

number of unique alerts), many probabilistic and statistical prediction techniques

would work well. Conversely, these techniques are expected to fail when the

number of new alerts is large.

 28

Figure 4. F-score Comparison: One Attacker versus One Victim with
Random Period of up to 180 Seconds between Attacks

The accuracy of Single-Scope Blending (SSB) and Variable-Order Markov

Models (VOMM) were similar across the entropy levels while Simple Bayesian

Mixture and Multiple Simple Bayesian showed worse declining F-scores. We

observed that F-score decreased as entropy increased. This was consistent with

the unpredictability levels. However, there was a decrease in F-score at entropy

level three for all algorithms, which had only two batches of percepts (Table 7)

All four algorithms performed badly for one of the two batches, causing a sudden

decrease in F-score .

 Entropy Level
 1≤E<2 2≤E<3 3≤E<4 4≤E<5

Number of
batches

13 18 2 6

Table 7. Breakdown of Percept Batches: One Attacker versus One Victim
with Random Period of up to 180 Seconds between Attacks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All 1≤E<2 2≤E<3 3≤E<4 4≤E<5

F
-S

co
re

Entropy

1 Attacker vs 1 Victim - Random 180 Seconds Wait
between Attacks

SBM SSB MSB VOMM

 29

B. THREE ATTACKERS VERSUS THREE VICTIMS

We wanted to compare prediction accuracy in scenarios where with more

attackers and victims. We let three attackers randomly select one of three victims

during each attack. This increased the possible actor pairs (attacker-victim) to

nine to better simulate real-life cyber threats with multiple hackers scouring for

potential victims on the network.

We observed no difference in the types of random attacks launched

between a the first scenario and a three attackers versus three victims scenario.

Figure 5 shows that SSB performed consistently better than the rest as we

increased the number of attackers and victims in our experiment. At entropy level

five, SSB is 0.1 better in F-score than MSB and VOMM. SBM, on the other hand,

dd not show any change in accuracy.

Figure 5. F-score Comparison: Three Attackers versus Three Victims with
Random Period of up to 180 Seconds between Attacks

(No Overlapping Attacks)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All 1≤E<2 2≤E<3 3≤E<4 4≤E<5 5≤E<6

F
-S

co
re

Entropy

3 Attackers vs 3 Victims - Random 180 Seconds
Wait between Attacks. No overlapping attacks

SBM SSB MSB VOMM

 30

At lower entropy levels, we already observed different accuracies among

the prediction algorithms unlike in the first scenario. The reason appears to be

that SSB uses structural similarities to better match seemingly dissimilar

situations. SBM, MSB and VOMM received incoming percepts as nine different

actor pairs. Assuming there was already a set of situations in the knowledge

base involving attacker-victim pair A-B performing action set X, as SSB received

incoming percepts involving a different attacker-victim pair C-D but performing

same action set X, it could cast an analogy from A-B to C-D to make a prediction

(Tan & Darken, 2012b). SBM, MSB and VOMM cannot form this analogy,

because they can only predict alerts that have been generated before.

Figure 6 shows the results where we allowed three attackers to launch

their attacks consecutively. We expected the prediction complexity to increase

because of the increased probability of overlapping attacks from different

attackers, but a 180 seconds wait between attacks was too large to show a new

effect.

Figure 6. F-score Comparison: Three Attackers versus Three Victims with
Random Period of up to 180 Seconds between Attacks

(Simultaneous attacks)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All 1≤E<2 2≤E<3 3≤E<4 4≤E<5 5≤E<6

F
-s

co
re

Entropy

3 Attackers vs 3 Victims - Random 180 Seconds
Wait between Attacks. Simultaneous Attacks

SBM SSB MSB VOMM

 31

Table 8 shows the number of alert batches distributed over the different

entropy level. We reduced the random wait time between attacks to about 10

seconds. At the same time, the number of incoming percept sequences

increased within a short time period. Table 9 shows an extract of alerts from

attackers of different IP addresses. It was observed that other attackers launched

attacks while IP address “192.168.1.115” sent fragmented packets to IP address

“192.168.1.101. Other than SBM whose accuracy remained similar to previous

attack configurations, all other prediction algorithms showed declined accuracy at

entropy level five. SSB remained the top performer by at least 0.08 as shown in

Figure 7.

 Entropy Level
 1≤E<2 2≤E<3 3≤E<4 4≤E<5 5≤E<6

Number
of

batches

Experiment 2 32 30 33 26 3
Experiment 3 75 101 57 46 11
Experiment 4 100 140 75 65 15

Table 8. Distribution of Percept Batches for Experiment 2,3 and 4

 32

Timestamp Sig. ID Rev. Message Protocol Source IP Destination IP

07/27/12-
08:55:01.345651

123 13 1 (spp_frag3) Tiny
fragment

TCP 192.168.1.115 192.168.1.101

07/27/12-
08:55:01.345844

123 13 1 (spp_frag3) Tiny
fragment

TCP 192.168.1.115 192.168.1.101

07/27/12-
08:55:03.695396

1 17322 1 SHELLCODE x86
OS agnostic fnstenv
geteip dword xor
decoder

TCP 192.168.1.138 192.168.1.102

07/27/12-
08:55:03.695396

1 1378 21 FTP wu-ftp bad file
completion attempt

TCP 192.168.1.138 192.168.1.102

07/27/12-
08:55:03.695396

125 2 1 (ftp_telnet) Invalid
FTP Command

TCP 192.168.1.138 192.168.1.102

07/27/12-
08:55:03.766376

1 2000001 0 FTP brute force
failed login unicode
attempt

TCP 192.168.1.117 192.168.1.101

07/27/12-
08:55:04.009447

1 1122 10 WEB-MISC
/etc/passwd

TCP 192.168.1.117 192.168.1.101

07/27/12-
08:55:04.323224

123 13 1 (spp_frag3) Tiny
fragment

TCP 192.168.1.115 192.168.1.101

07/27/12-
08:55:04.323327

123 13 1 (spp_frag3) Tiny
fragment

TCP 192.168.1.115 192.168.1.101

Table 9. Extract of Alerts from Multiple Attackers

 33

Figure 7. F-score Comparison: Three Attackers versus Three Victims with Random
Period of about 10 Seconds between Attacks. (Simultaneous Attacks)

Although SSB outperforms the other prediction algorithms, it was the

slowest. The computation data is tabulated in Table 10. The maximum prediction

time for SSB was 4.283 seconds as compared to the MSB (next best performer)

at 0.141 seconds, while the mean prediction time was 0.221 seconds for SSB

compared to 0.011 seconds for MSB.

Time (seconds)

SBM SSB MSB VOMM

Maximum 1.182 4.283 0.141 0.065

Mean 0.038913 0.220718 0.010814 0.017035

Table 10. Computation Time: Three Attackers versus Three Victims with Random
Period of about 10 Seconds between Attacks. (Simultaneous Attacks)

Tables 11, 12, and 13 provides the probability the prediction accuracies of

other algorithms were similar to that of SSB. Paired T-Test compares F-scores of

each situation while group t-test compares the average F-Scores. These results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All 1≤E<2 2≤E<3 3≤E<4 4≤E<5 5≤E<6

F
-s

co
re

Entropy

3 Attackers vs 3 Victims - About 10 Seconds Wait
between Attacks. Simultaneous Attacks

SBM SSB MSB VOMM

 34

support the hypothesis (at 95% confidence level) that SSB outperforms SBM,

MSB, and VOMM from a different perspective.

1≤E<2
SBM MSB VOMM

Paired T-test 5.77E-04 1.36E-02 6.54E-19
Group T-test 5.68E-03 3.51E-02 7.20E-20

2≤E<3
SBM MSB VOMM

Paired T-test 1.25E-08 6.00E-04 2.49E-05
Group T-test 4.12E-05 3.02E-02 3.05E-02

3≤E<4
SBM MSB VOMM

Paired T-test 5.35E-10 1.80E-03 1.42E-07
Group T-test 4.12E-08 1.71E-02 1.55E-03

4≤E<5
SBM MSB VOMM

Paired T-test 7.33E-11 4.97E-07 4.68E-05
Group T-test 1.40E-15 1.45E-03 2.14E-02

5≤E<6
SBM MSB VOMM

Paired T-test 6.45E-06 1.34E-02 2.65E-03
Group T-test 1.30E-07 3.23E-02 1.19E-02

Table 11. T-test Probabilities that the Algorithm’s Performance is similar
to that of SSB’s (Experiment 2)

1≤E<2
SBM MSB VOMM

Paired T-test 8.65E-15 3.55E-09 9.53E-15
Group T-test 1.59E-06 1.75E-03 1.31E-05

2≤E<3
SBM MSB VOMM

Paired T-test 1.71E-12 8.07E-05 2.98E-09
Group T-test 1.23E-05 3.63E-02 1.48E-03

3≤E<4
SBM MSB VOMM

Paired T-test 1.49E-29 6.06E-15 2.80E-21
Group T-test 1.37E-19 1.35E-05 1.17E-08

4≤E<5
SBM MSB VOMM

Paired T-test 2.39E-15 2.56E-13 1.73E-10
Group T-test 1.18E-22 4.47E-04 6.64E-03

5≤E<6
SBM MSB VOMM

Paired T-test 3.18E-07 6.49E-06 7.88E-06
Group T-test 3.30E-11 1.15E-02 9.95E-03

Table 12. T-test Probabilities that the Algorithm’s Performance is similar
to that of SSB’s (Experiment 3)

 35

1≤E<2
SBM MSB VOMM

Paired T-test 8.34E-24 1.34E-14 1.20E-14
Group T-test 5.17E-04 1.77E-02 2.92E-03

2≤E<3
SBM MSB VOMM

Paired T-test 8.71E-20 9.12E-06 1.37E-14
Group T-test 1.05E-08 1.50E-02 1.46E-05

3≤E<4
SBM MSB VOMM

Paired T-test 5.56E-28 5.56E-28 6.77E-11
Group T-test 1.75E-17 1.75E-17 9.24E-05

4≤E<5
SBM MSB VOMM

Paired T-test 4.02E-18 4.02E-18 5.89E-16
Group T-test 3.58E-25 3.58E-25 9.91E-04

5≤E<6
SBM MSB VOMM

Paired T-test 5.22E-07 5.22E-07 1.74E-04
Group T-test 3.91E-08 3.91E-08 4.26E-02

Table 13. T-test Probabilities that the Algorithm’s Performance is similar
to that of SSB’s (Experiment 4)

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

VI. CONCLUSION AND FUTURE WORK

This thesis generated intrusion-detection system alerts to support the

performance analysis of prediction algorithms in cyber security. We generated

intrusion alerts by simulating attacks within an internal network environment. This

provided a sufficient dataset for the evaluation of a prediction algorithm, although

some Pytbull modules are not detected by Snort. This approach saves effort

because it would be time-consuming to collect intrusion alerts from real attacks

through honeypots. We were able to adjust the frequency of attacks, number of

attackers and number of targets to help us in our evaluation.

We then evaluated the performance of several relational time-series

prediction algorithms on our generated alerts. The prediction accuracy declined

as the entropy level of the alerts increased. We observed that an increase in

number of attackers and victims lowered accuracy of prediction, except of SBM,

which underperformed consistently. The performance of MSB and VOMM were

similar across the experiments, and inferior to that of Single-Scope Blending. It

appeared that the latter’s conceptual blending approach was able to make good

use of the structural properties during situation selection. It could help with

situations where attackers vary IP address and targets.

For future work, we suggest implementing online prediction algorithms into

an intrusion-detection system. We could set up a common database to allow the

system to store new alerts while prediction algorithms retrieve and process them.

The predicted alerts can be stored in a prediction database to provide network

administrators with additional information.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

LIST OF REFERENCES

Albin, E. (2011). A comparative analysis of the Snort and Suricata intrusion-
detection systems. (Master's thesis, Naval Postgraduate School).
Retrieved from
http://edocs.nps.edu/npspubs/scholarly/theses/2011/September/11Sep_Al
bin.pdf

BackTrack. (n.d). BackTrack. Retrieved from BackTrack Linux – Penetration
Testing Distribution website: http://www.backtrack-linux.org

Cipriano, C., Zand, A., Houmansadr, A., Kruegel, C., & Vigna, G. (2011). Nexat:
A history-based approach to predict attacker actions. ACSAC '11
Processings of the 27th Annual Computer Security Applications
Conference, 383–392.

Council, N. S. (n.d.). Cybersecurity. Retrieved from the White House website:
http://www.whitehouse.gov/cybersecurity

Damaye, S. (2012). Pytbull. Retrieved from Pytbull website:
http://pytbull.sourceforge.net/index.php?page=home

Darken, C. J. (2005). Towards learned anticipation in complex stochastic
environments. Proceedings of the First Artificial Intelligence and
Interactive Digital Entertainment Conference, 27–32.

Geib, C. W., & Goldman, R. P. (2001). Plan recognition in intrusion detection
systems. Proceedings of the Second Darpa Information Survivability
Conference and Exposition (DISCEXII), 329–342.

Johnson, N. B. (2011, March 23). Attacks on Federal networks increased forty
percent. Retrieved from Federal Times website:
http://www.federaltimes.com/article/20110323/IT01/103230303/

Lei, J., & Li, Z. (2007). Using network attack graph to predict the future attacks.
Communications and Networking in China, 2007, 403–407.

Li, Z., Zhang, A., Li, D., & Wang, L. (2007). Discovering novel multistage attack
strategies. ADMA '07 Proceedings of the 3rd international conference on
Advanced Data Mining and Applications, 45–56.

Olney, M. (2008). Performance rules creation. Retrieved from Snort website:
http://www.snort.org/assets/173/SnortUsersWebcast-Rules_pt1.pdf

Rijsbergen, C. V. (1979). Information retrieval. Retrieved from
http://www.dcs.gla.ac.uk/Keith/Preface.html

 40

Rowe, N. C., Custy, E. J., Duong, B. T. (2007). Defending cyberspace with fake
honeypots. Journal of Computers, 2, 25–36.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Technical Journal, 27, 379–423, 623-656.

Snort. (2012). Snort. Retrieved from www.snort.org

Spitzner, L. (1999). Build a honeypot. Retrieved from
http://www.spitzner.net/honeypot.html

Symantec. (2011, April 5). Symantec report finds cyber threats skyrocket in
volume and sophistication. Retrieved from
http://www.symantec.com/about/news/release/article.jsp?prid=20110404_
03

Tan, K. M., & Darken, C. J. (2012a). Learning & prediction in relational time
series: A survey. 21st Behavior Representation in Modeling & Simulation
(BRIMS) Conference 2012, 93–100.

Tan, K. M., & Darken, C. J. (2012b). Faster conceptual blending predictors on
relational time series. Information Fusion (FUSION), 2012 15th
International Conference, 188–195.

VMware. (2012). Virtualize your IT infrastructure. Retrieved from
http://www.vmware.com/virtualization/

 41

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Professor Yeo Tat Soon

Director, Temasek Defence Systems Institute
National University of Singapore, Singapore

4. Ms Tan Lai Poh

Senior Manager, Temasek Defence Systems Institute
National University of Singapore, Singapore

5. Mr Teo Tiat Leng

Deputy Director, Land Systems
Defence Science and Technology Agency, Singapore

6. Mr Khong Farn Wei Jason

Naval Postgraduate School
Monterey, California

